823 Robust repeated median regression in moving windows with data - adaptive width selection

نویسندگان

  • Matthias Borowski
  • Roland Fried
چکیده

Online (also ’real-time’ or ’sequential’) signal extraction from noisy and outlierinterfered data streams is a basic but challenging goal. Fitting a robust Repeated Median (Siegel, 1982) regression line in a moving time window has turned out to be a promising approach (Davies et al., 2004; Gather et al., 2006; Schettlinger et al., 2006). The level of the regression line at the rightmost window position, which equates to the current time point in an online application, is then used as signal extraction. However, the choice of the window width has large impact on the signal extraction, and it is impossible to predetermine an optimal fixed window width for data streams which exhibit signal changes like level shifts and sudden trend changes. We therefore propose a robust test procedure for the online detection of such signal changes. An algorithm including the test allows for online window width adaption, meaning that the window width is chosen w.r.t. the current data situation at each time point. Comparison studies show that our new procedure outperforms an existing Repeated Median filter with automatic window width selection (Schettlinger et al., 2010).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of moving bed biofilm reactor (MBBR) by applying adaptive neuro-fuzzy inference systeme (ANFIS), radial basis function (RBF) and Fuzzy Regression Analysis

The purpose of this study is to investigate the accuracy of predictions of aniline removal efficiency in a moving bed biofilm reactor (MBBR) by various methods, namely by RBF, ANFIS, and fuzzy regression analysis. The reactor was operated in an aerobic batch and was filled by light expanded clay aggregate (LECA) as a carrier for the treatment of Aniline synthetic wastewater. Exploratory data an...

متن کامل

Reducing False Alarms of Intensive Care Online-Monitoring Systems: An Evaluation of Two Signal Extraction Algorithms

Online-monitoring systems in intensive care are affected by a high rate of false threshold alarms. These are caused by irrelevant noise and outliers in the measured time series data. The high false alarm rates can be lowered by separating relevant signals from noise and outliers online, in such a way that signal estimations, instead of raw measurements, are compared to the alarm limits. This pa...

متن کامل

Multivariate Real-Time Signal Extraction by a Robust Adaptive Regression Filter

We propose a new regression-based filter for extracting signals online in moving windows from multivariate high frequency time series. This fast and robust filtering procedure considers the local covariance structure between the single time series components. It tackles the bias variance trade-off problem for the optimal choice of the window width by choosing the size of the window adaptively, ...

متن کامل

Robust and Adaptive Filtering of Multivariate Online-Monitoring Time Series

We propose a new regression-based filter for multivariate time series that separates signals from noise and outliers in real time. The new method merges the advantageous properties of two existent filtering procedures for online-monitoring time series. Our multivariate and robust procedure yields signal estimations at the right end point of a moving time window whose width is adapted to the cur...

متن کامل

An Adaptive-Robust Control Approach for Trajectory Tracking of two 5 DOF Cooperating Robot Manipulators Moving a Rigid Payload

In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/momen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011